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Abstract

“Big data” discussions typically focus on scale, i.e. the problems and potentials inherent
in very large collections. Here, we argue that the most important consequences of “big
data” for scholarship stem not from the increasing size of datasets, but instead from a
loss of control over the sources of data. The breakdown of the “control zone” due to the
uncertain provenance of data has implications for data integrity, and can be disruptive
to scholarship in multiple ways. A retrospective look at the introduction of larger
datasets in weather forecasting and epidemiology shows that more data can at times be
counter-productive, or destabilize already existing methods. Based on these examples,
we look at two implications of “big data” for scholarship: when the presence of large
datasets transforms the traditional disciplinary structure of sciences, as well as the

infrastructure for scholarly communication.

Introduction

“Very large” amounts of data in science are far from a new phenomenon. Previous eras
each saw their own “data deluge.” For example, the expansion of travel following the
discovery of the New World brought naturalists an unprecedented number of

specimens, observations, and measurements, forcing them to create new classification



systems (Strasser, 2012; Burke, 2011). The phrase “big data,” however, connotes
something much more recent. It first appeared in the scientific literature in 1970, and
the use of the term slowly increased before reaching a peak around 2008. It appeared
most often in computer science, but other disciplines are now involved, including
electrical engineering, telecommunication, mathematics, and business (Halevi, Moed,
2012). In the sciences, the phrase’s appearance coincides with the advent of large
infrastructures to support data-driven science. For example, the petabytes of data
streaming from high-energy physics experiments (studied thoroughly by Knorr-Cetina
(1999)) or those that are components of the Sloan Digital Sky Survey are certainly “big”
in terms of sheer size. A petabyte is approximately one million billion bytes; by
comparison, the text of all 32 million books in the US Library of Congress would, if
digitized, occupy just 20 terabytes, or one-fiftieth of a petabyte. These “petascale”
datasets stress the capacities of computers, networks, and storage systems, as well as
the budgets of the institutions that manage them. Even today’s fastest computer
networks cannot transfer petascale datasets in a reasonable amount of time; as a result,

computation is often moved to the data, rather than the other way round.

Several authors emphasize the scientific opportunities presented by these larger
datasets. “Big data” proponents have challenged the necessity of theory, promoting
science conceived as pattern recognition (Anderson, 2008). Others specifically
emphasize the size of datasets and their disruptive effects on science. Writing for a
Microsoft Research collection, prominent scientists have suggested that a “fourth
paradigm” (Hey et al., 2009) of “data-intensive scientific discovery” is arising due to the
ready availability of fine-grained environmental and social data from cheap, ubiquitous
sensors and social media. This new paradigm complements the prior paradigms of
experiment, theory, and simulation as sources of scientific knowledge. Similarly,
“computational social science” (Lazer et al.,, 2009) combines large sets of born-digital
social data (e.g. from email, or gathered by mobile phones) with social network analysis
to study how people interact, move, and communicate. In the humanities, several
projects such as the digital library HathiTrust aims to provide access to large collections

of digitized texts.



By contrast, more critical writers have highlighted the mythology (boyd, Crawford,
2012), hidden biases, and cult of personality (or “fundamentalism,” Crawford, 2013)
associated with the hype-ridden discourses surrounding big data. Some scholars
emphasize how large datasets can come to drive research questions and methods — the
reverse of the usual relationship — and thus to frame intellectual approaches in ways
that exclude what might be learned from smaller datasets or from methods less driven
by the exigencies of scale (Markham, 2013; Mahrt, Scharkow, 2013). An undue focus on
immediate “snapshot” analysis is one result (Arbesman, 2013), but other critics point to
the difficulties in sampling large datasets, e.g. from the Twitter API (Gerlitz, Rieder,
2013), the shortcomings of dealing with API requests (Vis, 2013), the ethical
considerations around accessing personal datasets (boyd, Crawford, 2012), and the

various limitations of publishing research based on large data (Bruns, 2013).

A healthy dialogue between proponents and critics of “big data” research helps to
develop a reflexive point of view on these emerging scientific practices. Yet we see
drawbacks in both perspectives. First, the phrase “big data” remains remarkably vague.
The use of the term across several social worlds, from industry to science to marketing,
results in multiple definitions. Similarly, the proliferation of “computational” and
“digital” sub-fields, such as “computational social sciences” or “digital humanities,”
seems to arise from a perceived need to engage with large data sets, yet succeeds mainly
in highlighting the absence of clear definitions. Second, both proponents and critics of
“big data” research focus mainly on the increase in size of datasets available, often
neglecting other, equally important socio-technical transformations of scientific

practices.

In this article, we argue that uncertainty about the provenance of data, rather than large
scale, best characterizes the real targets of many “big data” discussions. We demonstrate
that this uncertainty results from the loss of what Atkinson calls the “control zone”
(1996). A retrospective look at the introduction of larger datasets in weather forecast
and epidemiology will show that more data can be counter-productive and destabilize
already existing research methods. Based on these historical examples, we look at two
implications of “big data” for scholarship: transformations of traditional disciplinary

structures, and changes in the infrastructure of scholarly communication.



1. The fracturing of the control zone: an alternative view on “big

data”

We propose that “big data” fractures the provenance chain that traditionally formed the
basis for determining data integrity, and transitively research integrity. Traditionally,
provenance chains consisted of physically containable data (e.g., written by hand or
stored on magnetic disks or tapes), shared by handing them off physically to

colleagues. The physicality of the data, in their containers, and the direct transfer of
responsibility to colleagues with stakes in and knowledge of the data and their meaning,
provided an unassailable evidence chain. These highly-controlled, regimented

procedures were described by Atkinson with the notion of “control zone.”

In a seminal 1996 article, the late Ross Atkinson, then Associate University Librarian at
Cornell University, described how the notion of the control zone lies at the foundation of
the Library. Within this framework, the functioning of the library depends on a clearly
defined boundary separating what lies within the library from what is outside. Inside
this boundary, within the control zone, the library can lay claim to those resources that
have been selected as part of the Collection, and assert curation, or stewardship, of those
resources to ensure their consistent availability over the long term. The boundary of the
traditional library was easy to define. It was the building that contained and protected
the selected physical resources over which the library asserted control and curation
responsibility. Correspondingly, from patrons’ point of view, the boundary marked what
could be called a “trust zone”, an area in which they could presume that the integrity
guarantees of the library existed. The transition from the physically contained library
(bricks and mortar) to the networked digital library has fractured this formerly well-

defined control zone (Lagoze, 2010).

This fracturing of the library’s control zone offers a useful metaphor for thinking about
“big data” in the sciences. Consider social science research. For the past 70 years, many
of the most arresting new findings in the social sciences have been derived from
expensively produced, but also widely shared datasets. These included survey research
and government statistics such as the Roper Poll, the General Social Survey, the

American National Election Studies, and the Current Population Survey. In the US, after



the military needs of World War Il opened social science to large-scale federal research
funding for the first time (Converse, 1987: 242), the government funded an extensive
data infrastructure comprised of highly curated, metadata-rich social science archives
such as the ICPSR (Inter-University Consortium for Political and Social Research). Like
academic libraries, these institutions established control zones permitting data quality
and provenance to be preserved, and sometimes enhanced, while making them widely
available to the social science community through cooperative inter-institutional

arrangements, abroad as well as in the USA.

Today, these archives still play a major role in quantitative social science research.
However, the emergence and maturation of ubiquitous networked computing and the
ever-growing data cloud has introduced a spectacular quantity and variety of new data
sources as well, labeled by some as a “social science data revolution” (King, 2011a,
2011b). These include massive social media data sources such as Facebook, Twitter, and
other online communities, which when combined with more traditional data sources

provide the opportunity for studies at heretofore unimaginable scales and complexities.

Another example of fracturing the control zone exists in observational science, for
example, astronomy, meteorology, and field ecology. In each of these areas there is a
growing interest in crowd-sourced citizen science, which engages numerous volunteers
as participants in large-scale scientific endeavors. Our particular experience is with the
eBird project, which originated at the Cornell Laboratory of Ornithology. For over a
decade, this highly successful citizen science project has collected observations from
volunteer participants worldwide. By nature, citizen science must contend with the
problem of highly variable observer expertise and experience. How can we trust data
collected or aggregated by individuals who lack traditional scientific credentials such as
academic degree, publication record, or institutional affiliation? For this reason, crowd-
sourced citizen science makes the established scientific community uneasy (Sauer et al.,
1994), especially in fields where people’s lives are at stake, such as medicine (Raven,

2012).

These examples illustrate how the traditional control zone for scientific data is breaking
down. The reasons for this breakdown are not difficult to discern. For the researcher, an

enticing array of data is now available from non-traditional sources, such as social media



platforms. Data mashups, often mixing traditional and non-traditional sources, are
becoming increasingly common, sometimes with clear and substantial benefits (Plantin,
2015). Funders, the public, and scientists themselves are demanding better access to
data, including fully “open data,” in part as a hedge against fraudulent claims based on
cherrypicked, illegitimately manipulated, or nonexistent data (Boulton et al., 2012;
National Research Council, 2012). This demand grates against the operating principles
of some existing data archives, whose organizational raison d’étre depends on their
ability to guarantee data quality and provenance — i.e., on maintaining the control zone.

As aresult, the traditional criteria for assessing data integrity are being challenged.

While proponents of “big data” present its introduction as fundamentally additive—just
more fuel for the fire of research—the arrival of new data sources has, in the past,
frequently destabilized disciplines and research practices. In the following section, we

present two examples to think through the implications of new data.
2. How “big data” destabilizes knowledge production

“Uncontrolled” data will inevitably find a place in the research process. Just as libraries
cannot return to the era of control over physical resources within bricks and mortar
institutions (Lagoze, 2010), it would be unrealistic for any science to deny the reality
and potential benefits of a sociotechnical knowledge infrastructure that mixes the
formal with the informal. At the same time, in many cases adding data from uncontrolled
and potentially unreliable sources may jeopardize historically successful modes of
knowledge production. Examples from weather forecasting and epidemiology will

illustrate some of these risks.

2.1. The case of weather forecasting

In the history of weather forecasting, the arrival of new data sources, from radiosondes
(weather balloons) to satellite radiometers, initially created confusion and disrupted
existing knowledge processes. At the same time, meteorologists eagerly anticipated
them, and they ultimately proved of enormous value. By the turn of the 20th century,
telegraph networks were already used routinely for regional data exchange, especially
in Europe. Around 1900, meteorologists called for a réseau mondial (worldwide

network) that would permit the construction of quasi-global, near-real-time weather



maps. Although the telegraph-based réseau mondial never materialized, by the 1920s
worldwide meteorological data exchange was in fact possible, using a combination of
telegraph, teletype, shortwave radio, and several other media. Yet most forecasters
never tried to acquire most of these data, and actually discarded much of what they did
receive. The reason: pre-computer forecasting techniques simply could not use it within
the short time (hours) available for creating a useful forecast. Even climatologists, who
did not face the time pressure of forecasting, could not (before computers) make use of
much of the available data directly. Instead, they developed a system of distributed
calculation. Weather stations were asked to pre-compute such figures as monthly
average temperatures and report only those, rather than provide all the raw data to

central collectors, for whom the calculating burden would have been overwhelming.

Computer forecast models first became available in the mid-1950s. The pioneers of this
all-important technique faced a different problem. Weather models divide the
atmosphere into three-dimensional grids and compute transformations of mass, energy,
and momentum among grid boxes on a short time-step (every few minutes). Every grid
point must be supplied with a value at each time step; they cannot simply be zeroed out.
Yet most instrument observations of weather are taken every few hours (not minutes),
and very few weather stations or other instruments are located exactly at the gridpoints
used by the models. So forecasters developed techniques for interpolating gridpoint
values, in time and in space, from observations. In other words, they went from a pre-
computer situation in which the large amounts of available data were never used, to a
post-computer situation in which most data used were actually generated by

calculations (interpolation), rather than measured directly.

This problem later led to a far more complicated technique known as “four-dimensional
(4-D) data assimilation.” 4-D data assimilation systems ingest observations as they
arrive, using them to correct or steer an essentially model-based forecast process in
which the previous forecast is used as a “first guess” for the current time period.
Forecasters like to say that weather models “carry information” from data-rich areas,
where there are dense observing networks, to data-poor areas which lack them. When a
weather system moves from a data-rich to a data-poor area, the forecast made while

that system was still in the data-rich area becomes the “first guess” for its development



in the data-poor area — thus transferring the information acquired in the data-rich area

forward in time to its later location.

A surprising conclusion over five decades of experience with this process is that more
“real” data (i.e. observations) are not necessarily helpful. First, uneven global coverage is
more of a problem than is insufficient data volume. Second, observations inevitably
contain errors due to instrument bias, weather station siting, local topography, and
dozens of other factors. Third, since the error characteristics of observations are not
perfectly known, the best forecast centers now generate dozens of different data sets
from the observations, in order to simulate the likely range of possibility of the true
state of the atmosphere. Then they run forecasts on each of these data streams. The idea
is that since we can’t know exactly what the errors in the observational data actually are,
the statistical properties of a few dozen forecasts run on a few dozen variations on those

data are most likely to approximate what will really happen.

One of the most striking ways forecasters have pictured this process is to describe 4-D
data assimilation as “a unique and independent observing system” (Bengtsson, Shukla,
1988, p. 1134) that can generate better, more detailed images of actual planetary
weather than can instruments alone. In other words, simulation models (albeit guided
by real observations) give you better data than do your instruments. Or, to say it even
more provocatively, simulated data — appropriately constrained — are better than real

data.

To take another example, when satellite photographs of weather systems first became
available in the 1960s, many meteorologists were elated, and expected a revolution. As
it happened, though, interpreting the photographs proved much more difficult than
most anticipated. Taken from a great distance, at strange angles, the photographs
showed weather systems clearly but were hard to relate to existing standard
measurements, such as temperature, pressure, and wind speed. The same thing
happened when radar first entered meteorologists’ repertoire; these data promised
revolution, but it took well over a decade to work out how to use radar in daily
forecasting. In their first 15-20 years, both satellite photographs and radar found their

major uses as imagery for television meteorologists — much more symbol than



substance. Certainly they were not yet used as direct inputs to weather forecasts

(Courain, 1991).

Alast and even more striking episode involves the use of data from satellite
radiometers, which measure the energy Earth radiates into space. These instruments,
first flown around 1979, generate very large amounts of data continuously (unlike many
other weather data sources, such as surface stations, which take readings on a periodic
basis). The radiation they measure comes from the entirety of a huge column of air,
typically about 70 km wide and thousands of kilometers deep. Because weather forecast
models required values only at regular grid points, and because they already stretched
the limits of computer power, in the 1980s and 1990s forecasters converted these
continuous, volumetric satellite measurements into periodic point measurements — in
effect treating the satellites as if they were radiosondes. This massive data reduction
went on for two decades before computer power became sufficient to incorporate

satellite data directly (Edwards, 2010, ch. 15).

The example of weather forecasting shows that the quest for more data sometimes leads
in strange and possibly counter-productive directions. Weather forecasters sought and
eventually integrated many new data sources, especially satellites, leading to vast data
volumes anyone would describe as “big data.” Yet the actual practice of forecasting still
incorporates only some of these observational data, while discarding most of it. It also
shows how the very meaning of “data” has shifted, over time, toward a definition that
accepts processed, simulated, and/or analyzed data as ultimately more useful and more

accurate than anything instruments alone can provide.

2.2. The case of epidemiology

As we have noted, many conceptions of “big data” do not clearly define what they mean
by “big.” Researchers in the social sciences, for instance, seem to use the phrase “big
data” when they really mean “web data” or “social media data,” and the datasets they
ultimately collect may not be large by any standard. “Bigness,” when discussed at all, is
imagined only in terms of procedure—as a problem of “performance requirements,” for
example (Magoulas, Lorica, 2009, p. 2). This contrasts with other fields, where

increasing scale has proven epistemologically significant.



Our example here is epidemiology. In an initially controversial movement termed
“evidence-based medicine” (Sackett et al., 1996), doctors of the 1980s sought to join
forces with epidemiologists to better integrate systematic findings from associative
population studies into the clinical practice of medicine. These “observational”
datasets—meaning data from studies that did not involve random assignment to
treatment groups and a control group—were large by the standards of the day. They
held out the promise of solving large numbers of clinical puzzles at one swoop. The
biggest concern at the time wasn’t that these methods wouldn’t work, but that they were
“a dangerous innovation, perpetrated by the arrogant” (71) that would render medical
practice impersonal by replacing the subjective judgements of doctors with cold

statistics.

But the cold statistics did not work as expected. Recall that pundits such as Anderson
(2008) imagine that pattern-finding algorithms will now quasi-automatically generate
new truths from large datasets. In medicine of the 1990s, however, more data led to
more falsehoods. Epidemiologists produced a plethora of new medical associations such
as “Vitamin E lowers the risk of heart attack” and “a low-fat diet prevents cancer in
women” (examples from Young, 2009). These new findings received widespread press
coverage, only to be refuted when tested via expensive, randomized, controlled clinical
trials. A 1997 editorial cartoon proclaimed the New England Journal of Medicine to be the
“New England Journal of Panic-Inducing Gobbledygook” and depicted the research

process as a series of spinning roulette wheels (Borgman, 1997).

One cause of this state of affairs was that statistical techniques then in wide use were
calibrated, sometimes implicitly, to smaller sample sizes. Researchers who were used to
straining to detect any effect at all were suddenly able to easily detect small statistical
associations of questionable clinical value, and they did so, and these were published.
Trained to worry habitually about false negatives (that is, the danger of missing genuine,
but small effects), researchers had little experience in worrying about false positives,
which proliferated (Ziliak, McCloskey, 2007). The situation where a sensational new

finding appears and then is quickly proven false was termed “the Proteus Effect”



(Ioannidis, 2005, p.698) as researchers learned that the truth, like Proteus and the sea,

is mutable.

More and larger epidemiological research studies also revealed the fact that all
associations are not created equal. After detecting all of the “conspicuous” relationships
between risk factors and disease, such as the fact that smoking can increase the risk of
lung cancer by 3000% (Taubes, Mann, 1995: 164), researchers were left to sift the data
for the remaining, inconspicuous associations that proved subtle and weak by
comparison. As these remaining factors might influence disease by 300%, 30%, or
perhaps 3%, they proved very difficult to isolate. In the words of one researcher in the
mid 1990s, “we’re pushing the edge of what can be done with epidemiology” (ibid., p.
167). The first victories with “big data” promised future successes that proved

impossible to deliver, and this imperiled the whole evidence-based approach.

At a more fundamental level, one new truth that emerged is that many of the older
truths in epidemiology were also wrong. New data destabilized old knowledge, leading
to recent assessments that the bulk of all published findings in biomedicine are incorrect
(Ioannidis, 2005). Just as computer power allowed larger datasets to be processed with
existing methods, it also enabled the creation of new methods, invigorating a 200-year-
old philosophical debate about the use of Bayesian inference in place of Frequentist
inference (currently the dominant technique in applied statistics). Advances in
computers and networks allowed researchers to use more data, but analyzing these data
highlighted some of the flaws in Frequentist methods. Advances in computers and
networks also gave researchers the computational power to make alternative, Bayesian

models tractable.

The story of Proteus in epidemiology did not lead to a backlash against evidence, and
larger sample size is still seen as a positive. Yet the “big data” hopes from early evidence-
based medicine have been sharply curtailed. Some medical statisticians now advocate
that the discovery of an apparently important new finding in a research study should be
taken first and foremost as evidence of an error, as any associational study should

properly be expected to find nothing of value (Ioannidis, 2008a).



The earlier crises in epidemiology eventually led from cries for “more evidence” to a
wide-ranging conversation about the institutions of science and scientific publishing,
which were implicated as drivers of false results. Medical statistician John Ioannidis
recently characterized epidemiology as potentially supporting two kinds of researchers,
the “aggressive discoverer” and the “thoughtful replicator” (2008b, 646). The
“aggressive discoverer,” he argued, is currently rewarded by the system of scientific
publication, yet he produces findings that are extremely unlikely to be true. In the
Ioannidis call to action, in addition to more data, successful epidemiology demands
Bayesian statistical methods, a new system of scientific publication that rewards
replication and tracks null findings, and ultimately a revaluation of the role of data itself.
In loannidis’s terms, the “aggressive discoverer” in medicine conceptualizes datasets as
“private goldmines not to be shared” while the successful practice of research demands

that databases be public (Ioannidis, 2008b, 646) so that suspect findings can be checked.

As noted previously, in meteorology new data led to an increased reliance on elaborate
modes of conditioning and assimilating data, and the field moved away from the analysis
of needlessly raw and needlessly large datasets. In the context of epidemiology, new
data led to a proliferation of contradictory findings. Although the datasets (presumably)
had a known provenance, the discipline is now arguing that the researchers themselves
are not trustworthy and that data need to be widely shared in order to allow all new

claims to be extensively checked.

3. “Big data” as transformative for scholarship

Our argument thus far has been that there is more to “big data” than just its “bigness”. In
particular, we see the term as describing data sources and practices that are disruptive
on the level of knowledge infrastructures and sociotechnical systems, rather than
existing as only a scaling problem that requires a technical solution (e.g., more
bandwidth, larger disk drives, parallel computing techniques, etc.). In the first section
we related “big data” to breakdowns in the traditional control zone, where the
provenance of data sources and collections is no longer guaranteed by established
knowledge institutions, generating questions of trust and integrity that remain
unresolved. In the second section we saw that new data sources and practices can

destabilize disciplines in unpredictable ways. In this section, we explore ways in which



“big data” are disrupting established scholarly communities, as well as the scholarly

infrastructure for dissemination and publication.

3.1. Unexpected scientific collaborations

Universities, funding agencies, publication venues, and learned societies all assume, and
support, institutionally-defined “disciplines” as basic organizational units. Disciplines
can be characterized as path dependencies, in the sense that they represent the
continuing imprint of historical choices and accidents. As administrative units and long-
lasting professional organizations, they shape not only the nature of research, but also
the reward systems — especially promotion and tenure decisions— that drive scholarly
careers. Yet close examination immediately reveals that most disciplines encompass a
wide variety of methodologies, epistemologies, publication practices, and other norms.
This raises the question of whether disciplines are really the most significant levels or

structures in academic research communities.

Research on this question has called out a number of other levels and structures, among
them invisible colleges (Lievrouw, 1989; Crane, 1969; de Solla Price and Beaver, 1966;
Wagner, 2009), communities of practice (Wenger, 1998; Lave and Wenger, 1991), grant-
funded projects (Cummings, Kiesler, 2005; Cummings, Pletcher, 2011), and team
sciencel, which better capture the characteristics of active research communities and
work groups. These differ along a variety of dimensions: size, from the solitary bench
chemist to the 1000+ person teams of high-energy physics; methodology, including
experimentation, simulation, observation, interpretation, and clinical intervention;
primary publishing mode, including journals, archival conference proceedings, and

monographs; geographical proximity; intellectual and social diversity; and others.

We argue that “big data” simultaneously emerge from and help to generate and
strengthen inter-, trans-, and post-disciplinary structures of scientific work, because of
the manner in which generating and using big data conflicts with the cultural norms of
disciplines. We see this disruption firstly on the scale of a single unit of scholarly

practice, and secondly in contexts that bring together multiple scholarly cultures.

1 . . . . . .
See the extensive resource list at www.scienceofteamscience.org/scits-a-team-science-resources.



As an example of disruption within a single field, consider the Human Genome Project.
Conceived in the mid-1980s, the Human Genome Project has successfully mapped the
entire human genome and made the results available through a fully open, shared,
network-accessible database. The resulting data arguably represent one of the great
achievements of a cooperative scientific enterprise. Creating and opening this primary
data source to the scientific community had profound effects on fields such as
microbiology (Glasner, 1996) (Hilgartner, 1998). Laboratory-scale work groups, each
producing and guarding data for its own use, became dysfunctional. Instead, progress
now depended on a broader collaborative framework and more substantial cooperation.
This was manifested through data sharing in online, readily accessible data repositories,
which required releasing data from the control zone of the traditional laboratory into a
wider, messier arena. Thus, in this well-known example, “big data” transformed

scientific practice.

The second type of disruption occurs when “big data” research requires collaboration
between scholars previously separated by established and historical disciplinary, field,
or institutional barriers. Data-driven multidisciplinary collaborations can create
affinities between historically separate epistemologies and methods, providing the
context for radically new ways of thinking and doing things. As Kertcher (2010) has said,
“[c]ombining knowledge from different domains is the essence of innovation, as it offers
individuals and organizations a potent recipe to break away from cemented, path

dependent cognitive molds.”

At the same time, “forced marriage” collaborations around large data sets often confront
profound cultural differences. For example, the study of a “big data” project involving
ecologists and computer scientists showed how both had different levels of tolerance
towards uncertainty and relations to power — the former bring highly intolerant of
uncertainty and more comfortable with hierarchies, the latter being highly tolerant of
uncertainty and comfortable with loose organizational structures (Finholt, Birnholtz,
2006). Yet another potential source of friction (Edwards et al., 2011) is differing
attitudes towards openness and sharing (Kervin et al., 2012) within as well as between
fields, often influenced more by particular research group norms than by the subject of
study (Vertesi et al., 2011). Finally, a substantial source of friction sometimes conflicting,

often delay-inducing temporal patterns of team members and work groups, stemming



from a wide range of factors including research objects, time zone differences, other
work commitments, personal habits, bottlenecks in peer review, and so on (Jackson et
al,, 2011). For example, a field ecologist’s work rhythm may be determined by natural
events (e.g., the annual migration of a particular bird species), while that of a climate
modeler may be shaped by available supercomputer time. In a closely collaborative
project, these differing temporal patterns, along with others, will generate a specific

“collaborative rhythm,” and may also create friction and conflict.

3.2. The alternative dissemination of scholarship

Besides disrupting research communities and their work patterns, big data has
disruptive effects on how scholarly work is recorded and disseminated. Since the
origins of modern science in the 17t century, virtually all infrastructures for scholarly
communication have embodied a “scholarly value chain” characterized by the following

functions:
* Registration establishes the precedence of claims and findings.
« Certification by other scholars validates claims.
« Awareness mechanisms keep researchers abreast of new work.
« Archiving preserves the scholarly record over time.

* Rewarding creates incentives that increase the quality and quantity of scholarly

contributions (Roosendaal, Geurts, 1997).

For many decades, the registration function has been fulfilled principally by published
articles. These were packaged in journals, books, and archival conference proceedings
which (along with the related citation practices) served as awareness mechanisms, as
well as providing archivable records. Peer review has been the principal certification
mechanism. These mechanisms, highly (though not entirely) dependent on print
technology, have all been severely challenged by Internet- and web-based publication
and dissemination. In the print tradition, data were rarely published in raw form.

Instead, publication presented researchers’ synthesis and analysis of data, for example



in graphs or tables. Raw data remained effectively the intellectual property of their
producers. Though peer reviewers occasionally questioned data analysis or asked to see
the raw data from which some result was derived, instead they almost always simply
assumed the integrity of data analysis. Laboratories and research groups thus
functioned as control zones, within which data were produced, managed, archived, and
eventually lost. In principle, they guaranteed data integrity — though some scientists

famously took advantage of this principle to publish shaky or fraudulent claims.

By making it possible to circulate raw data nearly as easily as analysis and synthesis,
electronic media place new demands on the scholarly communication system (Borgman,
2011; Pepe et al.,, 2009; Wallis et al., 2011; Wynholds et al., 2012). One example is the
disruption of publication and citation practices. The publication and citation systems for
articles, book, and conference papers is very well established. Today, however, datasets
are increasingly recognized as important, publishable scholarly work products. What
“publication” means with respect to data remains very poorly defined, encompassing
everything from barely documented ftp sites, to obligatory posting of datasets along
with the journal articles built from them, to formal stand-alone publication. Data citation
schemes remain largely experimental, with many competing versions (Lawrence et al.,

2011; Parsons et al., 2010).

Data publication, as an emerging norm, is also challenging peer review, the principal
certification mechanism of the traditional scholarly communication system. But
mechanisms for peer review of data still remain highly problematic (Parsons et al.,
2010). For example, the technological requirements for article review are simple:
display text, images, and graphs on screen, or print them on paper. In contrast,
evaluating data (whose forms range from simple spreadsheets to petabytes of binary
information) may require elaborate technical scaffolding, access to software, and
computational resources. Despite these complications, there is general consensus in the
scholarly, publishing, and funding communities that in order to re-establish the
currently broken scholarly value chain, data must be integrated into the full cycle of

scholarly communication.

4. Conclusion



In this article, we aimed to define “big data” through associated transformations in the
nature and level of control over the data that underlie research, rather than as a simple
reflection of scale or scope. We focused on how data resources and data publication
stress traditional knowledge infrastructures, especially the disciplines, the role of
methods, scientific collaborations, and the publication infrastructure. If large and
potentially exhaustive datasets are often presented as disruptive, we showed that the
transformation of the control zone can also destabilize modes of knowledge production:
the case studies of weather forecasting and epidemiology showed how the availability of
larger datasets could be counter-effective or destabilizing. But this fracturing of the
control zone can cause other disruptions, such as upsetting the traditional separations
between scientific disciplines and disturbing the peer-reviewed journal as benchmark

for scholarly dissemination.

If “big data” means “big uncertainty” about the provenance of data, a major challenge for
scientists willing to use new data sources remains the questions of validity, integrity,
and quality. Specifically, how is it possible to assess the quality of datasets coming from
outside traditional control zones in science? Inevitably, questions such as these reduce
to more fundamental debates in science about positivism, constructionism and the like.
What is data quality and validity if “raw data is an oxymoron” (Gitelman, 2013),
implying that data validity is measured by level of community agreement rather than its
“correctness” as a transcription of some “underlying reality”? A possible amelioration of
this big data problem lies in developing new tools and techniques that provide the basis
for community-agreed-upon trust of new data sources. One path to achieving this is the
development of mechanisms to allow reproducibility and replicability of scholarly work
(Jasny et al,, 2011), and to acquire trust in data by making them open and reusable
(Molloy, 2011), thereby encouraging community quality determination. Another
possible approach is retrospective determination of data integrity: recovering traces of
origin, provenance, and the like from a digital artifact itself, perhaps drawing on the
practice of digital forensics (Reith et al,, 2002), a technique increasingly popular in the
intelligence and legal communities. One example is work that we have done in the
context of citizen science to infer observers’ expertise, and thus the quality of their
contributed data, from trace artifacts embedded in the data. None of these techniques

bring us back to the “good old days” when well-defined control zones provided a



physical trust environment for data. Nostalgia will not move us forward and, hopefully,
the more nuanced approach here will provide us the advantages of the new networked

world without throwing out the fundamental supports that science depends upon.
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